Mullins Lab Publications
Vascular Findings in the Choriocapillaris in a Case of Radiation Retinopathy Secondary to Choroidal Melanoma
Case Rep Ophthalmol. 2022 Aug 15;13(2):589-598. doi: 10.1159/000525568. eCollection 2022 May-Aug.
ABSTRACT
The effects of radiation retinopathy on the retinal vasculature have been well established; however, the literature describing the pathologic changes in the choriocapillaris is relatively lacking. In this report, we describe the histologic findings of a donor eye with a choroidal melanoma with special attention to the choriocapillaris. Clinical and histological findings, including immunohistochemistry and transmission electron microscopy, are described for the retina and choroid of a donor eye affected by radiation retinopathy secondary to treatment of choroidal melanoma. Cells within the tumor exhibited an epithelioid structure and balloon melanosomes. Notable infiltration of macrophages with elongated morphology was also observed. Atrophy of photoreceptors, retinal pigmented epithelium, and choriocapillaris was observed on the inferior edge of the lesion and extending past the tumor. The choriocapillaris endothelium showed more severe dropout at the periphery of the lesion where loss of fenestration, thickened cytosol, and degenerated pericytes were observed. Morphologic analysis revealed choriocapillaris loss with pronounced degeneration of choroidal pericytes. Understanding the differences in sensitivity to radiation injury between different cell types and different patients will provide better insight into radiation retinopathy.
PMID:36160486 | PMC:PMC9459633 | DOI:10.1159/000525568
Systems genomics in age-related macular degeneration
Exp Eye Res. 2022 Dec;225:109248. doi: 10.1016/j.exer.2022.109248. Epub 2022 Sep 13.
ABSTRACT
Genomic studies in age-related macular degeneration (AMD) have identified genetic variants that account for the majority of AMD risk. An important next step is to understand the functional consequences and downstream effects of the identified AMD-associated genetic variants. Instrumental for this next step are 'omics' technologies, which enable high-throughput characterization and quantification of biological molecules, and subsequent integration of genomics with these omics datasets, a field referred to as systems genomics. Single cell sequencing studies of the retina and choroid demonstrated that the majority of candidate AMD genes identified through genomic studies are expressed in non-neuronal cells, such as the retinal pigment epithelium (RPE), glia, myeloid and choroidal cells, highlighting that many different retinal and choroidal cell types contribute to the pathogenesis of AMD. Expression quantitative trait locus (eQTL) studies in retinal tissue have identified putative causal genes by demonstrating a genetic overlap between gene regulation and AMD risk. Linking genetic data to complement measurements in the systemic circulation has aided in understanding the effect of AMD-associated genetic variants in the complement system, and supports that protein QTL (pQTL) studies in plasma or serum samples may aid in understanding the effect of genetic variants and pinpointing causal genes in AMD. A recent epigenomic study fine-mapped AMD causal variants by determing regulatory regions in RPE cells differentiated from induced pluripotent stem cells (iPSC-RPE). Another approach that is being employed to pinpoint causal AMD genes is to produce synthetic DNA assemblons representing risk and protective haplotypes, which are then delivered to cellular or animal model systems. Pinpointing causal genes and understanding disease mechanisms is crucial for the next step towards clinical translation. Clinical trials targeting proteins encoded by the AMD-associated genomic loci C3, CFB, CFI, CFH, and ARMS2/HTRA1 are currently ongoing, and a phase III clinical trial for C3 inhibition recently showed a modest reduction of lesion growth in geographic atrophy. The EYERISK consortium recently developed a genetic test for AMD that allows genotyping of common and rare variants in AMD-associated genes. Polygenic risk scores (PRS) were applied to quantify AMD genetic risk, and may aid in predicting AMD progression. In conclusion, genomic studies represent a turning point in our exploration of AMD. The results of those studies now serve as a driving force for several clinical trials. Expanding to omics and systems genomics will further decipher function and causality from the associations that have been reported, and will enable the development of therapies that will lessen the burden of AMD.
PMID:36108770 | DOI:10.1016/j.exer.2022.109248
The Essential Role of the Choriocapillaris in Vision: Novel Insights from Imaging and Molecular Biology
Annu Rev Vis Sci. 2022 Sep 15;8:33-52. doi: 10.1146/annurev-vision-100820-085958.
ABSTRACT
The choriocapillaris, a dense capillary network located at the posterior pole of the eye, is essential for supporting normal vision, supplying nutrients, and removing waste products from photoreceptor cells and the retinal pigment epithelium. The anatomical location, heterogeneity, and homeostatic interactions with surrounding cell types make the choroid complex to study both in vivo and in vitro. Recent advances in single-cell RNA sequencing, in vivo imaging, and in vitro cell modeling are vastly improving our knowledge of the choroid and its role in normal health and in age-related macular degeneration (AMD). Histologically, loss of endothelial cells (ECs) of the choriocapillaris occurs early in AMD concomitant with elevated formation of the membrane attack complex of complement. Advanced imaging has allowed us to visualize early choroidal blood flow changes in AMD in living patients, supporting histological findings of loss of choroidal ECs. Single-cell RNA sequencing is being used to characterize choroidal cell types transcriptionally and discover their altered patterns of gene expression in aging and disease. Advances in induced pluripotent stem cell protocols and 3D cultures will allow us to closely mimic the in vivo microenvironment of the choroid in vitro to better understand the mechanism leading to choriocapillaris loss in AMD.
PMID:36108103 | PMC:PMC9668353 | DOI:10.1146/annurev-vision-100820-085958
Biocompatibility of Human Induced Pluripotent Stem Cell-Derived Retinal Progenitor Cell Grafts in Immunocompromised Rats
Cell Transplant. 2022 Jan-Dec;31:9636897221104451. doi: 10.1177/09636897221104451.
ABSTRACT
Loss of photoreceptor cells is a primary feature of inherited retinal degenerative disorders including age-related macular degeneration and retinitis pigmentosa. To restore vision in affected patients, photoreceptor cell replacement will be required. The ideal donor cells for this application are induced pluripotent stem cells (iPSCs) because they can be derived from and transplanted into the same patient obviating the need for long-term immunosuppression. A major limitation for retinal cell replacement therapy is donor cell loss associated with simple methods of cell delivery such as subretinal injections of bolus cell suspensions. Transplantation with supportive biomaterials can help maintain cellular integrity, increase cell survival, and encourage proper cellular alignment and improve integration with the host retina. Using a pig model of retinal degeneration, we recently demonstrated that polycaprolactone (PCL) scaffolds fabricated with two photon lithography have excellent local and systemic tolerability. In this study, we describe rapid photopolymerization-mediated production of PCL-based bioabsorbable scaffolds, a technique for loading iPSC-derived retinal progenitor cells onto the scaffold, methods of surgical transplantation in an immunocompromised rat model and tolerability of the subretinal grafts at 1, 3, and 6 months of follow-up (n = 150). We observed no local or systemic toxicity, nor did we observe any tumor formation despite extensive clinical evaluation, clinical chemistry, hematology, gross tissue examination and detailed histopathology. Demonstrating the local and systemic compatibility of biodegradable scaffolds carrying human iPSC-derived retinal progenitor cells is an important step toward clinical safety trials of this approach in humans.
PMID:35758274 | PMC:PMC9247396 | DOI:10.1177/09636897221104451
Inflammatory adipose activates a nutritional immunity pathway leading to retinal dysfunction
Cell Rep. 2022 Jun 14;39(11):110942. doi: 10.1016/j.celrep.2022.110942.
ABSTRACT
Age-related macular degeneration (AMD), the leading cause of irreversible blindness among Americans over 50, is characterized by dysfunction and death of retinal pigment epithelial (RPE) cells. The RPE accumulates iron in AMD, and iron overload triggers RPE cell death in vitro and in vivo. However, the mechanism of RPE iron accumulation in AMD is unknown. We show that high-fat-diet-induced obesity, a risk factor for AMD, drives systemic and local inflammatory circuits upregulating interleukin-1β (IL-1β). IL-1β upregulates RPE iron importers and downregulates iron exporters, causing iron accumulation, oxidative stress, and dysfunction. We term this maladaptive, chronic activation of a nutritional immunity pathway the cellular iron sequestration response (CISR). RNA sequencing (RNA-seq) analysis of choroid and retina from human donors revealed that hallmarks of this pathway are present in AMD microglia and macrophages. Together, these data suggest that inflamed adipose tissue, through the CISR, can lead to RPE pathology in AMD.
PMID:35705048 | PMC:PMC9248858 | DOI:10.1016/j.celrep.2022.110942
New approaches to the treatment of Age-Related Macular Degeneration (AMD)
Exp Eye Res. 2022 Aug;221:109134. doi: 10.1016/j.exer.2022.109134. Epub 2022 May 30.
NO ABSTRACT
PMID:35654115 | DOI:10.1016/j.exer.2022.109134
Age-Related Macular Degeneration Masquerade: A Review of Pentosan Polysulfate Maculopathy and Implications for Clinical Practice
Asia Pac J Ophthalmol (Phila). 2022 Mar-Apr 01;11(2):100-110. doi: 10.1097/APO.0000000000000504.
ABSTRACT
Pentosan polysulfate (PPS) sodium (Elmiron) is the only Food and Drug Administration (FDA)-approved oral medication to treat interstitial cystitis, also known as bladder pain syndrome. A symptomatic pigmentary maculopathy associated with PPS was reported in 2018. Since then, recognition of this unique drug toxicity has increased rapidly. This potentially sight-threatening side effect prompted the FDA in June 2020 to update the label for PPS to warn about "retinal pigmentary changes." A challenging feature of pentosan maculopathy is its ability to mimic many other retinal conditions, including inherited retinal dystrophies such as pattern dystrophy, mitochondrially inherited diabetes and deafness, and Stargardt disease, and age-related macular degeneration. In this review, we discuss the history of PPS maculopathy and its implications for thousands of at-risk interstitial cystitis patients. We use published literature and an illustrative case from our institution to highlight the importance of diagnosing PPS maculopathy. We also compare PPS maculopathy to age-related macular degeneration, explain why differentiating between the 2 is clinically important, and highlight avenues for further research. Finally, we highlight the paucity of data on patients of color and why this lack of understanding may impact patient care.
PMID:35533330 | PMC:PMC9096915 | DOI:10.1097/APO.0000000000000504
Choroidal endothelial and macrophage gene expression in atrophic and neovascular macular degeneration
Hum Mol Genet. 2022 Jul 21;31(14):2406-2423. doi: 10.1093/hmg/ddac043.
ABSTRACT
The human choroid is a heterogeneous, highly vascular connective tissue that dysfunctions in age-related macular degeneration (AMD). In this study, we performed single-cell RNA sequencing on 21 human choroids, 11 of which were derived from donors with early atrophic or neovascular AMD. Using this large donor cohort, we identified new gene expression signatures and immunohistochemically characterized discrete populations of resident macrophages, monocytes/inflammatory macrophages and dendritic cells. These three immune populations demonstrated unique expression patterns for AMD genetic risk factors, with dendritic cells possessing the highest expression of the neovascular AMD-associated MMP9 gene. Additionally, we performed trajectory analysis to model transcriptomic changes across the choroidal vasculature, and we identified expression signatures for endothelial cells from choroidal arterioles and venules. Finally, we performed differential expression analysis between control, early atrophic AMD, and neovascular AMD samples, and we observed that early atrophic AMD samples had high expression of SPARCL1, a gene that has been shown to increase in response to endothelial damage. Likewise, neovascular endothelial cells harbored gene expression changes consistent with endothelial cell damage and demonstrated increased expression of the sialomucins CD34 and ENCM, which were also observed at the protein level within neovascular membranes. Overall, this study characterizes the molecular features of new populations of choroidal endothelial cells and mononuclear phagocytes in a large cohort of AMD and control human donors.
PMID:35181781 | PMC:PMC9307320 | DOI:10.1093/hmg/ddac043
Local factor H production by human choroidal endothelial cells mitigates complement deposition: implications for macular degeneration
J Pathol. 2022 May;257(1):29-38. doi: 10.1002/path.5867. Epub 2022 Feb 17.
ABSTRACT
Activation of the alternative complement pathway is an initiating event in the pathology of age-related macular degeneration (AMD). Unchecked complement activation leads to the formation of a pro-lytic pore, the membrane attack complex (MAC). MAC deposition is observed on the choriocapillaris of AMD patients and likely causes lysis of choroidal endothelial cells (CECs). Complement factor H (FH, encoded by the gene CFH) is an inhibitor of complement. Both loss of function of FH and reduced choroidal levels of FH have been reported in AMD. It is plausible that reduced local FH availability promotes MAC deposition on CECs. FH is produced primarily in the liver; however, cells including the retinal pigment epithelium can produce FH locally. We hypothesized that CECs produce FH locally to protect against MAC deposition. We aimed to investigate the effect of reduced FH levels in the choroid to determine whether increasing local FH could protect CECs from MAC deposition. We demonstrated that siRNA knockdown of FH (CFH) in human immortalized CECs results in increased MAC deposition. We generated AMD iPSC-derived CECs and found that overexpression of FH protects against MAC deposition. These results suggest that local CEC-produced FH protects against MAC deposition, and that increasing local FH protein may be beneficial in limiting MAC deposition in AMD. © 2022 The Pathological Society of Great Britain and Ireland.
PMID:35038170 | PMC:PMC9007903 | DOI:10.1002/path.5867
Correlation of features on OCT with visual acuity and Gass lesion type in Best vitelliform macular dystrophy
BMJ Open Ophthalmol. 2021 Dec 7;6(1):e000860. doi: 10.1136/bmjophth-2021-000860. eCollection 2021.
ABSTRACT
OBJECTIVE: To correlate structural features seen on optical coherence tomography (OCT) with best-corrected visual acuity (BCVA) and Gass lesion type in patients with Best vitelliform macular dystrophy (BVMD).
METHODS AND ANALYSIS: This is a retrospective case series of consecutive patients with molecularly confirmed BEST1-associated BVMD. OCT scans were reviewed for lesion status and presence of subretinal pillar, focal choroidal excavation (FCE), intraretinal fluid or atrophy. Available OCT angiography images were used to evaluate for the presence of choroidal neovascularisation (CNV). These features were then correlated with BCVA and Gass lesion type.
RESULTS: 95 eyes from 48 patients (mean age 38.9 years, range 4-87) were included. The presence of a pillar (24.2%), FCE (20.0%) and atrophy (7.4%) were associated with poor BCVA (p<0.05). Gass lesion type 1 eyes were correlated with good BCVA (LogMAR <0.4) whereas type 5 eyes had poor BCVA (LogMAR >0.4). Among 65 eyes with longitudinal data (mean follow-up 5.1 years), 7 eyes (10.8%) reverted from higher to lower Gass lesion type; of these, 4 eyes (57.1%) had CNV responsive to intravitreal anti-vascular endothelial growth factor treatment.
CONCLUSION: OCT-based structural features are readily identifiable in patients with BVMD and have prognostic importance due to their correlation with BCVA.
PMID:34993349 | PMC:PMC8655537 | DOI:10.1136/bmjophth-2021-000860
Chimeric Helper-Dependent Adenoviruses Transduce Retinal Ganglion Cells and Müller Cells in Human Retinal Explants
J Ocul Pharmacol Ther. 2021 Dec;37(10):575-579. doi: 10.1089/jop.2021.0057. Epub 2021 Oct 1.
ABSTRACT
Purpose: Despite numerous recent advances in retinal gene therapy using adeno-associated viruses (AAVs) as delivery vectors, there remains a crucial need to identify viral vectors with the ability to transduce specific retinal cell types and that have a larger carrying capacity than AAV. In this study, we evaluate the retinal tropism of 2 chimeric helper-dependent adenoviruses (HDAds), helper-dependent adenovirus serotype 5 (HDAd5)/3 and HDAd5/35, both ex vivo using human retinal explants and in vivo using rats. Methods: We transduced cultured human retinal explants with HDAd5/3 and HDAd5/35 carrying an eGFP vector and evaluated tropism and transduction efficiency using immunohistochemistry. To assess in vivo transduction efficiency, subretinal injections were performed in wild-type Sprague-Dawley rats. For both explants and subretinal injections, we delivered 10 μL (1 × 106 vector genomes/mL) and assessed tropism at 7- and 14-days post-transduction, respectively. Results: HDAd5/3 and HDAd5/35 both transduced human retinal ganglion cells (RGCs) and Müller cells, but not photoreceptors, in human retinal explants. However, subretinal injections in albino rats resulted in transduction of the retinal pigmented epithelium only, highlighting species-specific differences in retinal tropism and the value of a human explant model when testing vectors for eventual human gene therapy. Conclusions: Chimeric HDAds are promising candidates for the delivery of large genes, multiple genes, or neuroprotective factors to Müller cells and RGCs. These vectors may have utility for targeted therapy of neurodegenerative diseases primarily involving retinal ganglion or Müller cell types, such as glaucoma or macular telangiectasia type 2.
PMID:34597181 | PMC:PMC8713574 | DOI:10.1089/jop.2021.0057
Sensitive quantification of m.3243A>G mutational proportion in non-retinal tissues and its relationship with visual symptoms
Hum Mol Genet. 2022 Mar 3;31(5):775-782. doi: 10.1093/hmg/ddab289.
ABSTRACT
The m.3243A>G mutation in the mitochondrial genome commonly causes retinal degeneration in patients with maternally inherited diabetes and deafness and mitochondrial encephalopathy, lactic acidosis and stroke-like episodes. Like other mitochondrial mutations, m.3243A>G is inherited from the mother with a variable proportion of wild type and mutant mitochondrial genomes in different cells. The mechanism by which the m.3243A>G variant in each tissue relates to the manifestation of disease phenotype is not fully understood. Using a digital PCR assay, we found that the % m.3243G in skin derived dermal fibroblasts was positively correlated with that of blood from the same individual. The % m.3243G detected in fibroblast cultures remained constant over multiple passages and was negatively correlated with mtDNA copy number. Although the % m.3243G present in blood was not correlated with severity of vision loss, as quantified by Goldmann visual field, a significant negative correlation between % m.3243G and the age of onset of visual symptoms was detected. Altogether, these results indicate that precise measurement of % m.3243G in clinically accessible tissues such as skin and blood may yield information relevant to the management of retinal m.3243A>G-associated disease.
PMID:34590675 | PMC:PMC8895728 | DOI:10.1093/hmg/ddab289
Development and biological characterization of a clinical gene transfer vector for the treatment of MAK-associated retinitis pigmentosa
Gene Ther. 2022 May;29(5):259-288. doi: 10.1038/s41434-021-00291-5. Epub 2021 Sep 14.
ABSTRACT
By combining next generation whole exome sequencing and induced pluripotent stem cell (iPSC) technology we found that an Alu repeat inserted in exon 9 of the MAK gene results in a loss of normal MAK transcript and development of human autosomal recessive retinitis pigmentosa (RP). Although a relatively rare cause of disease in the general population, the MAK variant is enriched in individuals of Jewish ancestry. In this population, 1 in 55 individuals are carriers and one third of all cases of recessive RP is caused by this gene. The purpose of this study was to determine if a viral gene augmentation strategy could be used to safely restore functional MAK protein as a step toward a treatment for early stage MAK-associated RP. Patient iPSC-derived photoreceptor precursor cells were generated and transduced with viral vectors containing the MAK transcript. One week after transduction, transcript and protein could be detected via rt-PCR and western blotting respectively. Using patient-derived fibroblast cells and mak knockdown zebra fish we demonstrate that over-expression of the retinal MAK transgene restored the cells ability to regulate primary cilia length. In addition, the visual defect in mak knockdown zebrafish was mitigated via treatment with the retinal MAK transgene. There was no evidence of local or systemic toxicity at 1-month or 3-months following subretinal delivery of clinical grade vector into wild type rats. The findings reported here will help pave the way for initiation of a phase 1 clinical trial for the treatment of patients with MAK-associated RP.
PMID:34518651 | PMC:PMC9159943 | DOI:10.1038/s41434-021-00291-5